Supergaussian Garch Models

نویسنده

  • Israel Cohen
چکیده

In this paper, we introduce supergaussian generalized autoregressive conditional heteroscedasticity (GARCH) models for speech signals in the short-time Fourier transform (STFT) domain. We address the problem of speech enhancement, and show that estimating the variances of the STFT expansion coefficients based on GARCH models yields higher speech quality than by using the decision-directed method, whether the fidelity criterion is minimum mean-squared error (MMSE) of the spectral coefficients or MMSE of the log-spectral amplitude (LSA). Furthermore, while a Gaussian model is inferior to Gamma and Laplacian models when estimating the variances by the decision-directed method, a Gaussian model is superior when using the GARCH modeling method. This facilitates MMSE-LSA estimation, while taking into consideration the heavy-tailed distribution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speech spectral modeling and enhancement based on autoregressive conditional heteroscedasticity models

In this paper, we develop and evaluate speech enhancement algorithms, which are based on supergaussian generalized autoregressive conditional heteroscedasticity (GARCH) models in the short-time Fourier transform (STFT) domain. We consider three different statistical models, two fidelity criteria, and two approaches for the estimation of the variances of the STFT coefficients. The statistical mo...

متن کامل

Noise Reduction by Maximum a Posteriori Spectral Amplitude Estimation with Supergaussian Speech Modeling

ESTIMATION WITH SUPERGAUSSIAN SPEECH MODELING Thomas Lotter and Peter Vary Institute of Communication Systems and Data Processing ( ) Aachen University (RWTH), Templergraben 55, D-52056 Aachen, Germany E-mail: lotter vary @ind.rwth-aachen.de ABSTRACT This contribution presents a spectral amplitude estimator for acoustical background noise suppression based on maximum a posteriori estimation and...

متن کامل

Management Working Papers School of Management Forecasting the weekly time-varying beta of UK firms: comparison between GARCH models vs Kalman filter method

This paper investigates the forecasting ability of four different GARCH models and the Kalman filter method. The four GARCH models applied are the bivariate GARCH, BEKK GARCH, GARCH-GJR and the GARCH-X model. The paper also compares the forecasting ability of the non-GARCH model the Kalman method. Forecast errors based on twenty UK company weekly stock return (based on timevary beta) forecasts ...

متن کامل

Efficient Factor GARCH Models and Factor-DCC Models

We reveal that in the estimation of univariate GARCH or multivariate generalized orthogonal GARCH (GO-GARCH) models, maximizing the likelihood is equivalent to making the standardized residuals as independent as possible. Based on that, we propose three factor GARCH models in the framework of GO-GARCH: independent-factor GARCH exploits factors that are statistically as independent as possible; ...

متن کامل

On the existence of supergaussian directions on convex bodies

We study the question whether every centered convex body K of volume 1 in R has “supergaussian directions”, which means θ ∈ Sn−1 such that ̨̨̨̨ x ∈ K : |〈x, θ〉| > t Z K |〈x, θ〉|dx ff ̨̨̨̨ > e 2 , for all 1 6 t 6 √ n, where c > 0 is an absolute constant. We verify that a “random” direction is indeed supergaussian for isotropic convex bodies that satisfy the hyperplane conjecture. On the other hand, we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005